Lower Santa Cruz River Basin Study: Study Progress, Review of Modeling Framework and Next Steps Eve Halper Water Resources Planner Bureau of Reclamation Project Team Meeting #8 April 2, 2018 #### **Study Process Overview** ## Simplified Modeling Overview Tucson AMA Groundwater Model Climate Driving Forces (Precipitation, Temperature) GLOBAL CLIMATE MODELS SURFACE HYDROLOGY MODEL Socio-Economic Driving Forces (Demographics, Economics, Technological, Regulatory) CAP SERVICE AREA MODEL **900** -8.5 -6.0**-4.5 -2.6** 2060 2080 Year **Emissions Scenarios** Which GCM(s) and Downscaling Method(s) are appropriate for our Study? **LSCR Basin Study Climate Modeling Detail** Now 2060 T, P Now 2060 ## RECLAMATI ## **Development of Climate Metrics of Concern** - All Teams Climate Metrics Webinar held on 12/1/2017 - Metrics suggested by partners and sub-team members: - Winter versus summer precipitation - Monsoon precipitation, especially time of onset - Length of pre-monsoon dry season - Frequency of intense winter storm events - Intensity of precipitation - Extreme temperatures - Seasonal evaporation rates - Length and timing of winter freeze - Ability to reproduce spatial variability within the basin - Effects of atmospheric rivers ## Development of Climate Metrics of Concern, con't - From partner / stakeholder input, UA / Reclamation Technical Team selected 5 key metrics: - Average monthly precipitation (winter vs. summer precipitation) - Extreme precipitation events by month (precip intensity & frequency) - Extreme monthly temperatures - Date of Monsoon Onset - Date of Last Winter Storm Together these compose the length of the dry season #### Simplified Modeling Overview Recap ## Tucson AMA Groundwater Model Climate Driving Forces (Precipitation, Temperature) GLOBAL CLIMATE MODELS SURFACE HYDROLOGY MODEL Socio-Economic Driving Forces (Demographics, Economics, Technological, Regulatory) CAP SERVICE AREA MODEL #### **CAP:SAM to Groundwater Model Detail** | | Low Risk | _ | ligh Risk | | | |---|--|--|------------------------------------|---|---| | Driving Forces | Demand Scenario 2
Slow Compact Growth | Demand Scenario 3
Slow Outward Growth | Demand Scenario 1
Baseline | Demand Scenario 4
Rapid Outward Growth | Demand Scenario S
Rapid Outward Growth Plus
Mining and no
Replenishment | | Demand Scenario Summary | Low growth unies:
condensed growth pattern,
no additional mines,
no overdraft in Green Valley | Medium growth series:
outward growth patters,
new mine development,
replanish Green Valley | Medium growth series | High growth series:
outward growth pattern,
new mine development,
replenish Green Valley | High growth series:
outward growth pattern,
mining growth,
bonepienishment in Green Valley | | Municipal Demand:
Population Growth Rate | Low Series | Medium Series | Medium | High Series | High Series | | Municipal Demand:
Infill vs. Outward Growth | In Fill/Redevelopment | Slow Outward | Official Projection | Rapid Outward | Rapid Outward | | Municipal Demand:
Gallons Per Household Unit
Per Day | Decline faster than expected | Decline as expected | Decline as expected | No change in current
GPHUD | No change in current 6FHIJD | | Municipal Demand:
Additional recharge | Year 2020 | Year 2090 | per current CAP-SAM
assumptions | Year 2010 | Neuer | | Municipal Demand:
Develop Ag Land or
Undeveloped Land | Low GPHLID development
tends to replace high water
use ag land. | CAP-SAM Rassine | Official Projection | Higher GPHLID development
occurs on undeveloped land
before replacing agriculture | Higher GHHUb development
occurs on undeveloped land
before replacing agriculture | | Agricultural Demand:
Consumptive Use (CU) Crop | Some ag areas convert to low
CU crops | No change in CU crops | Official Projection | Some ag areas convert to
higher CU crops | Some ag areas convert to higher
CU crops | | Agricultural Demand:
Groundwater Savings
Projects | Highest savings start 2018 | Highest savings start in
2018 | per current CAP-SAM
assumptions | Half of highest savings start
in 2025 | No cavings | | Industrial Demand:
Manufacturing | Slow economic growth and/or
greatly improved water use
efficiency | Moderate economic growth
within existing water service
areas, expected
improvements in efficiency | Official Projection | Rapid economic growth that
depends on groundwater,
minimal improvements in
efficiency | Rapid economic growth that
depends on groundwater,
minimal improvements in
efficiency | | Industrial Demand:
Mining | No new mines | New mine in 2020-2030 | Official Projection | New mine in 2020-2010,
Existing mines expand | New mine in 2020,
Existing mines expand | | Environment's Demand:
Exparian Evapotranspiration | Changes with climate and availability of surface water and shallow groundwater | Changes with climate and
availability of surface water
and shallow groundwater | Official Projection | Changes with climate and availability of surface water and shallow groundwater | Changes with climate and availability of surface water and shallow groundwater | **Demand Scenario** CAP Service Area Model | Demand Scenario X | | | | | |-------------------|-------------------------------------|--|--|--| | Water
Provider | Total
Demand
per Unit
Time | | | | | Tucson Water | Y(TW) | | | | | Metro Water | Y(Metro) | | | | | Marana Water | Y(Marana | | | | Demand Scenario X – Example: Metro Water | Total
Demand
per Unit
Time | Well
A | Well
B | |-------------------------------------|-----------|-----------| | Period 1 | A1 | B1 | | Period 2 | A2 | B2 | | Period 3 | А3 | В3 | This step is performed by water providers within the Demand Sub-teams #### **Next Steps - Climate** - Complete Evaluation of Climate Models for Best Case / Lower Risk and Worse Case / Higher Risk Emissions Scenarios - UA / Reclamation Technical Team will recommend the downscaled projections to use for each case to Project Team - Project Team can approve selection or ask for modifications ### Next Steps – CAP:SAM Results - When the combinations of climate and demand scenarios have been selected, CAP staff will complete CAP:SAM model runs and provide total demand values through time to water providers - As part of the demand sub-teams' activities, water providers will develop information on which wells would be pumped through time given the demand projected by the CAP:SAM - This information will be provided to a groundwater modeler in Reclamation's Technical Service Center for input into the Tucson Active Management Area Groundwater Model ## **Update on Time Extension / Budget Request** - Reclamation's Lower Colorado Regional Director approved request - Memo has been forwarded to Reclamation's Policy Office - No word on when a response will be received ## Questions?